副研究员
课题组长
王志青,男,1982年生,博士,课题组长,所纪委委员,副研究员,中国科学院青年创新促进会会员,飞禽走兽老虎机:创新团队成员,“三晋英才-青年优秀人才”,《洁净煤技术》中青年专家委员会委员。2005年毕业于中国矿业大学,同年进入中国科学院山西煤炭化学研究所攻读硕/博士学位,2010年按时毕业并留所工作。一直从事煤气化、煤基固废资源化、气化渣分质梯级利用、焦炉制清洁气化焦、型煤、气化配煤等方面的研究、技术开发、工程验证、特别是涉企业应用类技术的完善工作。提出高比例低阶煤制洁净气化焦新成焦理论、研制配方并完成工业示范;首次对气流床气化炉与石炭纪高铝煤的适应性进行了研究,完成了三十万吨级入炉煤的配制和工业试烧工作;煤矸石基环保型煤配方已建成50万吨/年生产线;完善了煤气化、热解、焦油裂解和甲烷化耦合制富甲烷气的理论基础,有力支撑了100吨/天中试;提出了催化气化耦合灰渣铝硅提取的技术路线,解决催化剂失活、回收难题的同时实现了气化渣的分质梯级利用制备高端材料。此外,作为负责人承担国家基金委面上、国家基金委青年科学基金、飞禽走兽老虎机:青年基金、飞禽走兽老虎机:大型仪器改造、中国煤炭进出口公司高技术开发、中国科学院青年促进会、中国科学院山西煤炭化学研究所青年人才基金及中石油、同煤、神华等企业横向等项目。作为骨干或联系人参与了科技部重大专项、中科院战略性先导科技专项、973、中国科学院大型仪器修购专项、知识创新工程重要方向、山西自然科学基金、飞禽走兽老虎机:科技创新重点团队、中国第一重型机械集团大连设计研究院委托项目及知识创新工程领域前沿等项目。在Chem. Eng.Sci.,Chem. Eng. Sci.,Ind. Eng. Chem. Res.,J. Clean. Prod, Energ. Convers. Manage.,Appl. Energ.,Fuel等国内外学术期刊发表文章百余篇。所在集体获飞禽走兽老虎机:科技创新重点团队、飞禽走兽老虎机:科学技术进步奖二等奖、飞禽走兽老虎机:工人先锋号、飞禽走兽老虎机:科技奉献等奖项。
专利成果:
[1] 王志青, 黄国宝, 李庆峰, 黄戒介, 房倚天, 赵建涛, 张永奇, 供氢溶剂和表面活性剂在甲烷化反应中的应用, 2015.
[2] 黄戒介, 杜梅杰, 刘哲语, 房倚天, 王志青, 一种高钙气化灰渣制备低导热系数保温材料的方法, 2018.
[3] 黄戒介, 杨志荣, 王志青, 房倚天, 一种提高低阶煤配煤制取高强度焦炭产率的方法, 2020.
[4] 王志青, 黄国宝, 李庆峰, 黄戒介, 房倚天, 赵建涛, 张永奇, 一种非负载型合成气甲烷化催化剂及制备方法和应用, 2017.
[5] 王志青, 李莉, 黄戒介, 房倚天, 冀少华, 李春玉, 王志宇, 董立波, 张永奇, 刘哲语, 聂伟, 一种利用催化气化灰渣制备水玻璃的方法, 2018.
[6] 王志青, 梅艳钢, 黄戒介, 房倚天, 陈有川, 张永奇, 徐弈丰, 郭金霞, 李莉, 赵建涛, 一种皮革废料催化热解气化的方法, 2016.
[7] 王志青, 梅艳钢, 黄戒介, 房倚天, 董立波, 王志宇, 赵建涛, 李春玉, 张永奇, 李莉, 一种城市垃圾催化热解气化的方法, 2016.
[8] 王志青, 梅艳钢, 黄戒介, 房倚天, 余中亮, 冀少华, 刘哲语, 郝振华, 赵建涛, 张永奇, 一种石油焦催化气化的方法, 2016.
[9] 王志青, 梅艳钢, 黄戒介, 房倚天, 余中亮, 聂伟, 宋双双, 李俊国, 张永奇, 赵建涛, 一种煤催化气化的方法, 2016.
[10] 王志青, 梅艳钢, 黄戒介, 房倚天, 张永奇, 冀少华, 李春玉, 王志宇, 董立波, 聂伟, 李俊国, 郭金霞, 郝振华, 一种催化气化煤灰制备分子筛的方法, 2018.
[11] 王志青, 梅艳钢, 黄戒介, 房倚天, 张永奇, 刘哲语, 李俊国, 李莉, 李翔宇, 聂伟, 余中亮, 宋双双, 一种二氧化碳-水-醇体系回收碱金属催化剂的方法, 2018.
[12] 王志青, 梅艳钢, 黄戒介, 房倚天, 张永奇, 宋双双, 李莉, 李翔宇, 聂伟, 余中亮, 刘哲语, 一种催化气化耦合气化灰提取氧化铝的方法, 2018.
[13] 余钟亮, 房倚天, 赵建涛, 黄戒介, 李春玉, 郭金霞, 刘哲语, 王志青, 一种基于化学链气化的煤制氢气及甲烷的工艺, 2018.
飞禽走兽老虎机:
[1] Q. Zhang, Q. Li, L. Zhang, Z. Wang, X. Jing, Z. Yu, S. Song, Y. Fang, Preliminary study on co-gasification behavior of deoiled asphalt with coal and biomass, Applied Energy, 132 (2014) 426-434.
[2] G. Li, Z. Liu, J. Li, Y. Fang, J. Shan, S. Guo, Z. Wang, Modeling of ash agglomerating fluidized bed gasifier using back propagation neural network based on particle swarm optimization, Applied Thermal Engineering, 129 (2018) 1518-1526.
[3] L. Ding, Y. Zhang, Z. Wang, J. Huang, Y. Fang, Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char, Bioresource Technology, 173 (2014) 11-20.
[4] X. Huo, Z. Wang, J. Huang, R. Zhang, Y. Fang, Bulk Mo and Co–Mo carbides as catalysts for methanation, Catalysis Communications, 79 (2016) 39-44.
[5] Q. Zhang, Q. Li, H. Wang, Z. Wang, Z. Yu, L. Zhang, W. Huang, Y. Fang, Experimental study on co-pyrolysis and gasification behaviors of petroleum residue with lignite, Chemical Engineering Journal, 343 (2018) 108-117.
[6] W. Jiao, Z. Wang, X. Zhou, Y. Mei, R. Feng, T. Liu, L. Ding, J. Huang, Y. Fang, Catalytic steam gasification of sawdust char on K-based composite catalyst at high pressure and low temperature, Chemical Engineering Science, 205 (2019) 341-349.
[7] Q. Zhang, Q. Li, L. Zhang, Z. Yu, X. Jing, Z. Wang, Y. Fang, W. Huang, Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt, Energy, 134 (2017) 301-310.
[8] S. Gao, L. Zhai, Y. Qin, Z. Wang, J. Zhao, Y. Fang, Investigation into the Cleavage of Chemical Bonds Induced by CO2 and Its Mechanism during the Pressurized Pyrolysis of Coal, Energy & Fuels, 32 (2018) 3243-3253.
[9] X. Jing, Z. Wang, Z. Yu, Q. Zhang, C. Li, Y. Fang, Experimental and kinetic investigations of co2 gasification of fine chars separated from a pilot-scale fluidized-bed gasifier, Energy & Fuels, 27 (2013) 2422-2430.
[10] X. Jing, Z. Wang, Q. Zhang, Z. Yu, C. Li, J. Huang, Y. Fang, Evaluation of CO2 gasification reactivity of different coal rank chars by physicochemical properties, Energy & Fuels, 27 (2013) 7287-7293.
[11] L. Li, Z. Wang, J. Huang, S. Ji, Y. Mei, Y. Wang, Y. Fang, Comparison of Silica Leaching Behaviors from the Acid-Leached Residue of Catalytic Gasification and Combustion, Energy & Fuels, 31 (2017) 10745-10751.
[12] Y. Mei, Z. Wang, J. Bai, C. He, W. Li, T. Liu, J. Huang, Y. Fang, Mechanism of Ca Additive Acting as a Deterrent to Na2CO3 Deactivation during Catalytic Coal Gasification, Energy & Fuels, 33 (2019) 938-945.
[13] Y. Mei, Z. Wang, H. Fang, Y. Wang, J. Huang, Y. Fang, Na-Containing Mineral Transformation Behaviors during Na2CO3-Catalyzed CO2 Gasification of High-Alumina Coal, Energy & Fuels, 31 (2017) 1235-1242.
[14] Y. Wang, Z. Wang, J. Huang, Y. Fang, Catalytic Gasification Activity of Na2CO3 and Comparison with K2CO3 for a High-Aluminum Coal Char, Energy & Fuels, 29 (2015) 6988-6998.
[15] Z. Yang, J. Huang, Z. Wang, Y. Fang, Unique Advantages of Gasification-Coke Prepared with Low-Rank Coal Blends via Reasonable Granularity Control, Energy & Fuels, 33 (2019) 2115-2121.
[16] Z. Yu, C. Li, Y. Fang, J. Huang, Z. Wang, Reduction Rate Enhancements for Coal Direct Chemical Looping Combustion with an Iron Oxide Oxygen Carrier, Energy & Fuels, 26 (2012) 2505-2511.
[17] W. Jiao, Z. Wang, W. Jiao, L. Li, Z. Zuo, G. Li, Z. Hao, S. Song, J. Huang, Y. Fang, Influencing factors and reaction mechanism for catalytic CO2 gasification of sawdust char using K-modified transition metal composite catalysts: Experimental and DFT studies, Energy Conversion and Management, 208 (2020) 112522.
[18] G. Li, Z. Liu, T. Liu, J. Shan, Y. Fang, Z. Wang, Techno-economic analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification, Energy Conversion and Management, 164 (2018) 552-559.
[19] M. Du, J. Huang, Z. Liu, X. Zhou, S. Guo, Z. Wang, Y. Fang, Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment, Fuel, 224 (2018) 178-185.
[20] T. Liu, Z.L. Yu, Y.G. Mei, R.T. Feng, S. Yang, Z.Q. Wang, Y.T. Fang, Potassium migration and transformation during the deep reduction of oxygen carrier (OC) by char in coal-direct chemical looping hydrogen generation using potassium-modified Fe2O3/Al2O3 OC, Fuel, 256 (2019) 9.
[21] Y. Mei, Z. Wang, Y. Fang, J. Huang, W. Li, S. Guo, L. Li, CO2 catalytic gasification with NaAlO2 addition for its low-volatility and tolerant to deactivate, Fuel, 242 (2019) 160-166.
[22] Z. Yang, J. Huang, S. Song, Z. Wang, Y. Fang, Insight into the effects of additive water on caking and coking behaviors of coal blends with low-rank coal, Fuel, 238 (2019) 10-17.
[23] Q. Zhang, Q. Yuan, H. Wang, Z. Wang, Z. Yu, L. Liang, Y. Fang, W. Huang, Evaluation of gas switch effect on isothermal gas-solid reactions in a thermogravimetric analyzer, Fuel, 239 (2019) 1173-1178.
[24] Z. Guo, Z. Bai, J. Bai, Z. Wang, W. Li, Co-liquefaction of lignite and sawdust under syngas, Fuel Processing Technology, 92 (2011) 119-125.
[25] Z. Wang, Z. Bai, W. Li, J. Bai, Z. Guo, H. Chen, Effects of ion-exchanged calcium, barium and magnesium on cross-linking reactions during direct liquefaction of oxidized lignite, Fuel Processing Technology, 94 (2012) 34-39.
[26] Z. Wang, Z. Bai, W. Li, H. Chen, B. Li, Quantitative study on cross-linking reactions of oxygen groups during liquefaction of lignite by a new model system, Fuel Processing Technology, 91 (2010) 410-413.
[27] Z. Yang, Q. Meng, J. Huang, Z. Wang, C. Li, Y. Fang, A particle-size regulated approach to producing high strength gasification-coke by blending a larger proportion of long flame coal, Fuel Processing Technology, 177 (2018) 101-108.
[28] Z. Yu, C. Li, X. Jing, Q. Zhang, Z. Wang, Y. Fang, J. Huang, Catalytic chemical looping combustion of carbon with an iron-based oxygen carrier modified by K2CO3: Catalytic mechanism and multicycle tests, Fuel Processing Technology, 135 (2015) 119-124.
[29] X. Li, Z. Wang, J. Wang, X. Jing, J. Huang, L. Li, Y. Mei, W. Li, Y. Fang, Acid-Leaching and Silanization of Catalytic Gasification Ash Enhance the Mechanical Properties of Polyurethane/Ash Composites, Industrial & Engineering Chemistry Research, 58 (2019) 1426-1433.
[30] G. Li, Z. Liu, R. Feng, W. Jiao, Y. Fang, Z. Wang, Conceptual design and analysis of a novel system based on ash agglomerating fluidized bed gasification for co-production of hydrogen and electricity, International Journal of Hydrogen Energy, 43 (2018) 1980-1988.
[31] G. Li, Z. Liu, J. Li, Y. Fang, T. Liu, Y. Mei, Z. Wang, Application of general regression neural network to model a novel integrated fluidized bed gasifier, International Journal of Hydrogen Energy, 43 (2018) 5512-5521.
[32] T. Liu, S. Hu, Z. Yu, J. Huang, J. Li, Z. Wang, Y. Fang, Research of coal-direct chemical looping hydrogen generation with iron-based oxygen carrier modified by potassium, International Journal of Hydrogen Energy, 42 (2017) 11038-11046.
[33] S. Gao, J. Wang, Z. Wang, J. Zhao, Y. Fang, Effect of CO on the CH4 evolution during fast pyrolysis of lignite in reductive atmospheres, Journal of Analytical and Applied Pyrolysis, 106 (2014) 104-111.
[34] Z. Wang, Z. Bai, W. Li, H. Chen, B. Li, The pyridine vapor adsorption behavior and its influence on suppressing low-temperature cross-linking reactions during slow pyrolysis of lignite, Journal of Analytical and Applied Pyrolysis, 87 (2010) 45-49.
[35] Y. Mei, Z. Wang, X. Zhou, L. Ding, Z. Liu, J. Huang, Y. Fang, Pressured carbon dioxide hydrothermal leaching of catalytic gasification ash for dealkalization of solid waste, sodium catalyst recovery and carbon dioxide utilization, Journal of Cleaner Production, 247 (2020) 119109.
[36] S. Gao, J. Zhao, Z. Wang, J. Wang, Y. Fang, J. Huang, Effect of CO on fast pyrolysis behaviors of lignite, Journal of Fuel Chemistry and Technology, 41 (2013) 550-557.
[37] S. Gao, J. Zhao, Z. Wang, J. Wang, Y. Fang, J. Huang, Effect of CO_2 on pyrolysis behaviors of lignite, Journal of Fuel Chemistry and Technology, 41 (2013) 257-264.
[38] Z. Wang, Z. Bai, W. Li, B. Li, H. Chen, Suppressing cross-linking reactions during pyrolysis of lignite pretreated by pyridine, Journal of Fuel Chemistry and Technology, 36 (2008) 641-645.
[39] H. Zhang, J. Li, S. Guo, Z. Wang, Y. Zhang, Y. Fang, Influence of coal ash on potassium retention and ash fusibility during gasification of corn stalk coke, Journal of Fuel Chemistry and Technology, 46 (2018) 1055-1062.
[40] J. Wang, Q. Yan, J. Zhao, Z. Wang, J. Huang, S. Gao, S. Song, Y. Fang, Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor, J Therm Anal Calorim, 118 (2014) 1663-1673.
[41] Y. Wang, Z. Wang, J. Huang, Y. Fang, Investigation into the characteristics of Na2CO3-catalyzed steam gasification for a high-aluminum coal char, J Therm Anal Calorim, 131 (2018) 1213-1220.
[42] Q. Zhang, Q. Li, L. Zhang, Y. Fang, Z. Wang, Experimental and kinetic investigation of the pyrolysis, combustion, and gasification of deoiled asphalt, J Therm Anal Calorim, 115 (2014) 1929-1938.
[43] F. Li, B. Yu, J. Li, Z. Wang, M. Guo, H. Fan, T. Wang, Y. Fang, Exploration of potassium migration behavior in straw ashes under reducing atmosphere and its modification by additives, Renewable Energy, 145 (2020) 2286-2295.
[44] H. Zhang, J. Li, X. Yang, S. Song, Z. Wang, J. Huang, Y. Zhang, Y. Fang, Influence of coal ash on CO2 gasification reactivity of corn stalk char, Renewable Energy, 147 (2020) 2056-2063.
[45] X. Huo, Z. Wang, J. Huang, R. Zhang, Y. Fang, One-step synthesis of bulk Mo and Ni-Mo carbides for methanation, RSC Advances, 6 (2016) 24353-24360.